2.3 Principle of Inclusion and Exclusion

The following result is well known and hence we omit the proof.
Theorem 2.3.1. Let U be a finite set. Suppose A and B are two subsets of U. Then the number of elements of U that are neither in A nor in B are

$$
|U|-(|A|+|B|-|A \cap B|) .
$$

Or equivalently, $|A \cup B|=|A|+|B|-|A \cap B|$.
A generalization of this to three subsets A, B and C is also well known. To get a result that generalizes Theorem 2.3.1 for n subsets $A_{1}, A_{2}, \ldots, A_{n}$, we need the following notations:
$S_{1}=\sum_{i=1}^{n}\left|A_{i}\right|, \quad S_{2}=\sum_{1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right|, \quad S_{3}=\sum_{1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|, \cdots, S_{n}=\left|A_{1} \cap A_{2} \cap \cdots \cap A_{n}\right|$.
With the notations as defined above, we have the following theorem, called the inclusionexclusion principle. This theorem can be easily proven using the principle of mathematical induction. But we give a separate proof for better understanding.

Theorem 2.3.2. [Inclusion-Exclusion Principle] Let $A_{1}, A_{2}, \ldots, A_{n}$ be n subsets of a finite set U. Then the number of elements of U that are in none of $A_{1}, A_{2}, \ldots, A_{n}$ is given by

$$
\begin{equation*}
|U|-S_{1}+S_{2}-S_{3}+\cdots+(-1)^{n} S_{n} \tag{2.1}
\end{equation*}
$$

Or equivalently,

$$
\begin{equation*}
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|=S_{1}-S_{2}+\cdots+(-1)^{n-1} S_{n} . \tag{2.2}
\end{equation*}
$$

Proof. We show that if an element $x \in U$ belongs to exactly k of the subsets $A_{1}, A_{2}, \ldots, A_{n}$, for some $k \geq 1$, then its contribution in (2.1) is zero. Suppose x belongs to exactly k subsets $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{k}}$. Then we observe the following:

1. The contribution of x in $|U|$ is 1 .
2. The contribution of x in S_{1} is k as $x \in A_{i_{j}}, 1 \leq j \leq k$.
3. The contribution of x in S_{2} is $\binom{k}{2}$ as $x \in A_{i_{j}} \cap A_{i_{l}}, 1 \leq j<l \leq k$.
4. The contribution of x in S_{3} is $\binom{k}{3}$ as $x \in A_{i_{j}} \cap A_{i_{l}} \cap A_{i_{m}}, 1 \leq j<l<m \leq k$.

Proceeding this way, we have
5. The contribution of x in S_{k} is $\binom{k}{k}=1$, and
6. The contribution of x in S_{ℓ} for $\ell \geq k+1$ is 0 .

So, the contribution of x in (2.1) is

$$
1-k+\binom{k}{2}-\binom{k}{3}+\cdots+(-1)^{k-1}\binom{k}{k-1}+(-1)^{k}\binom{k}{k}+0 \cdots+0=(1-1)^{k}=0 .
$$

This completes the proof of the theorem. The readers are advised to prove the equivalent condition.

Example 2.3.3. 1. Determine the number of 10 -letter words using ENGLISH alphabets that does not contain all the vowels.
Solution: Let U be the set consisting of all the 10 -letters words using ENGLISH alphabets and let A_{α} be a subset of U that does not contain the letter α. Then we need to compute

$$
\left|A_{a} \cup A_{e} \cup A_{i} \cup A_{o} \cup A_{u}\right|=S_{1}-S_{2}+S_{3}-S_{4}+S_{5},
$$

where $S_{1}=\sum_{\alpha \in\{a, e, i, o, u\}}\left|A_{\alpha}\right|=\binom{5}{1} 25^{10}, S_{2}=\binom{5}{2} 24^{10}, S_{3}=\binom{5}{3} 23^{10}, S_{4}=\binom{5}{4} 22^{10}$ and $S_{5}=21^{10}$. So, the required answer is $\sum_{k=1}^{5}(-1)^{k-1}\binom{5}{k}(26-k)^{10}$.
2. Determine the number of integers between 1 and 1000 that are coprime to $2,3,11$ and 13 . Solution: Let $U=\{1,2,3, \ldots, 1000\}$ and let $A_{i}=\{n \in U: i$ divides $n\}$, for $i=$ $2,3,11,13$. Then note that we need the value of $|U|-\left|A_{2} \cup A_{3} \cup A_{11} \cup A_{13}\right|$. Observe that

$$
\begin{aligned}
\left|A_{2}\right|= & \left\lfloor\frac{1000}{2}\right\rfloor=500,\left|A_{3}\right|=\left\lfloor\frac{1000}{3}\right\rfloor=333,\left|A_{11}\right|=\left\lfloor\frac{1000}{11}\right\rfloor=90,\left|A_{13}\right|=\left\lfloor\frac{1000}{13}\right\rfloor=76, \\
& \left|A_{2} \cap A_{3}\right|=\left\lfloor\frac{1000}{6}\right\rfloor=166,\left|A_{2} \cap A_{11}\right|=\left\lfloor\frac{1000}{22}\right\rfloor=45,\left|A_{2} \cap A_{13}\right|=\left\lfloor\frac{1000}{26}\right\rfloor=38, \\
& \left|A_{3} \cap A_{11}\right|=\left\lfloor\frac{1000}{33}\right\rfloor=30,\left|A_{3} \cap A_{13}\right|=\left\lfloor\frac{1000}{39}\right\rfloor=25,\left|A_{11} \cap A_{13}\right|=\left\lfloor\frac{1000}{143}\right\rfloor=6, \\
& \left|A_{2} \cap A_{3} \cap A_{11}\right|=15,\left|A_{2} \cap A_{3} \cap A_{13}\right|=12,\left|A_{2} \cap A_{11} \cap A_{13}\right|=3, \\
& \left|A_{3} \cap A_{11} \cap A_{13}\right|=2,\left|A_{2} \cap A_{3} \cap A_{11} \cap A_{13}\right|=1 .
\end{aligned}
$$

Thus, the required number is
$1000-((500+333+90+76)-(166+45+38+30+25+6)-(15+12+3+2)-1)=1000-720=280$.
3. (Euler's ϕ-function Or Euler's totient function) Let n denote a positive integer. Then the Euler ϕ-function is defined by

$$
\begin{equation*}
\phi(n)=|\{k: 1 \leq k \leq n, \operatorname{gcd}(n, k)=1\}| . \tag{2.3}
\end{equation*}
$$

Determine a formula for $\phi(n)$ in terms of its prime factors.
Solution: Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ be the unique decomposition of n as product of distinct
primes $p_{1}, p_{2}, \ldots, p_{k}, U=\{1,2, \ldots, n\}$ and let $A_{p_{i}}=\left\{m \in U: p_{i}\right.$ divides $\left.m\right\}$, for $1 \leq i \leq$ k. Then, by definition

$$
\begin{align*}
\phi(n) & =|U|-S_{1}+S_{2}-S_{3}+\cdots+(-1)^{k} S_{k} \\
& =n-\sum_{i=1}^{k} \frac{n}{p_{i}}+\sum_{1 \leq i<j \leq k} \frac{n}{p_{i} p_{j}}-\cdots+(-1)^{k} \frac{n}{p_{1} p_{2} \cdots p_{k}} \\
& =n \prod_{i=1}^{k}\left(1-\frac{1}{p_{i}}\right) \tag{2.4}
\end{align*}
$$

